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AN II,I,IAC PROGRAM FOR THE NUMERICAL S IMUI.ATION OF HOMO(_ENEOUS

INCOMPRESSIIBI,E TURBI_ENCE

Robert S. Rogallo

Ames Research Center

SUMMARY

An algorithm and ILLIAC computer program, developed for the simulation

of homogeneous incompressible turbulence in the presence of an applied mean
strain, are described. The turbulence field is represented spatially by

a truncated triple Fourier series (spectral method) and followed in time

using a fourth-order Runge-Kutta algorithm. Several transformations are

applied to the numerical problem to enhance the basic algorithm. These
include

i. Transformation o_ variables suggested by Taylor's sudden-distortion

theory

2. Implicit viscous diffusion by use of an integrating factor

3. Implicit pressure calculation suggested by Taylor's sudden-

distortion theory

4. Inexpensive control of aliasing by random and phased coordinate
shifts

INTRODUCTI ON

The primary difficulty in the numerical simulation of homogeneous
turbulence is that the nonlinearity of the equations of fluid motion excites

a large range of scales (i.e., a large ratio of largest to smallest scale)

of motion in both space and time. The computer resource required for a

complete simulation is proportional to the product, over all space-time
dimensions, of the range of computed scales of each dimension. These scale

ranges increase with Reynolds number (R), and their product increases so

rapidly, in three space dimensions, that only the weakest experimentally
studied turbulence can be simulated completely on today's computers.

The overall range of scales continues to increase indefinitely with

Reynolds number. However, at a sufficiently high Reynolds numbcr the scales

of motion can be grouped, in order of decreasing scale, into three distinct

ranges: the energy-containing range, the "inertial" range, and the dissipa-

tion range (fig. i). Further increases in Reynolds number increase only the
inertial range. The range of energy-contalning scales, which determine the
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feature_ o_ turbul.ence of engineering Interest, t,_i hound_d a.,_ R-, _, and the
(," motion in these scales becomes independent of the motion at ,_ma!.ler scales,
tl; At somewhat lower R, the Inertial and dfsstpatton ranges merge buL still do
_, not at:feet the energy-containing rang_ At sufficiently low R, dlssipattc_:
_. occurs i:_ the energy-_:ontaining range itself. This physical description

of the scale dependence upon Reynolds number is encouraging because it indi-

ca_es that, in principle, only the energy-containing scales of motlon need tobe included in a high Reynolds number turbulence simulation. The difficulty
is that, mathematically, all the scales are coupled through the nonl_near

> terms in the governing equations and, although we know that physically
i" (i.e., statistically) the energy-containing range i_ uncoupled from the

iii? smaller scales, we do not know how to uncouple it mathematically. 1

li The zange of statistically interdependent scales increases with the

i anisotropy of the motion and, because most flows of engineering interest are ,i
anisotropic, it is important to determine the nature and magnitude of the

'i_ additional computational difficulty posed by anisotropy.

i:
_ THE NUMERICAL SIMULATION

The computational tool presented here is an unsteady incompressible

Navier-Stokes code that runs on the ILLIAC IV computer. The program computes
the evolution in time from an arbitrary homogeneous turbulence field in

the presence of a simple class of spatia!ly-linear mean flows. The simula-

tion is a spectral decomposition similar to that of Orszag (ref. i) but

differing in detail. The primary purpose of this report is to present the

simulation algorithm in detail sufficient to allow its use by others. The

program can be used as presented to study weak (low Reynolds number) turbu-
lence for which typical results are presented. The magnitude of the

computation (fig. 2) requires a computer at least as fast as a CDC-7600.

THE EQUATIONS OF MOTION

The equations governing the flow of a viscous constant-density fluid are
the familiar Navier-Stokes equations

= +
ut + (uu)x + (VU)y + (wu)z + Px V(Uxx + Uyy Uzz)

vt + (uv)x + (VV)y + (WV)z + py = _(Vxx + Vyy + Vzz) (i)

wt + (uw)x + (VW)y + (ww)z + Pz = U(Wxx + Wyy + Wzz)

ux + Vy + wz = 0

2
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where (u,v,w) is tile velocity vet_tor_ p is th_ pr_,.usur¢-_de,m_tv ratio,
v is the kinematic vlsco._Jlty, and subs_:ript._ denote dllferentiatton.

We wish to simulate numerically the effect of a simple class of i,',q:o:;ed

,' strains on a homogeneous field of turbu]ence. The strain field is given hy

(u,_,w) = [xa(t),yb(t),zc(t)]

where a + b 4 c = 0 as required by continuity. It is convenient to intro-

duce the following transformation of the dependent variables:
l

u = ax + AI/2_'_

" v by + Bl/2v

I_ = (2)
w cz + cl/20

P -- 2 d-t + a2)x2 + ( + +__ ): + ( + :):
where a(t), b(t), and c(t) are the arbitrary time-dependent strain rates

imposed, and the resulting inverse square strains are

-2f t a dt

A(t) = e
@o

-2fot b dt
B(t) = e (3)

C(t) = e o

It follows from the continuity condition that material volumes are invariant,

(i.e., ABC = i). Explicit spatial dependence of the resulting system of

equations is eliminated by the following transformation of independent
variables :

= A I/2 x "_

= BI/2y _ (4)_.= C112 z

The equations of motion for the transformed turbulence flcld are then

,,._:_ ........ I ........ ...... I ....... : i " ==...... _:_'_ ............ I
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i.,,+_,+ at + ^<aa)_ + _(_,a)_.+ c(_a)i;.++ _ = ,,(^a.-xx+̂ _+,a.+yy+ c;,_+)..+.. 1

P: vt + A(GG)i + B(;_)#+ u(G+)_++ _§= +(^vii+ BG_ + c+i_-1 > (s)

,! =+. _. 1.:,:Jy:_+ cw._._.)
!:+ w t + A([J_')_ + B + C(_}w)2 + ]%:Z v

• ,, Z. " . ,

:r

_ A6_+ B_^+ c_i..= oi y Z -
:_;;

_+' It is interesting to note that Taylor's theory (see ref. 2) for tile

sudden distortion of a turbulent field is particularly simple when expressed
in these transformed variables, because strain rate does not appear. Suppose

that a field of turbulence (state I) is rapidly strained. The resultingI

I field (state 2) is defined as

fi(2) ^(I) j_T C't
= U + dt , etc.

where _ is a time characteristic of the imposed straining period.

Continuity must be satisfied throughout the straining process and, in

particular, in the initial and final states of strain. Hence, if the total

strain imposed is given by its inverses A,B,C, we have

u^ + + ^ = 0 at t
x y z

Au! 2) + BQ (2) + Cw (2) = 0 at t +
x y z

As the strain becomes sudden (T + 0) A,B,C, u, v, and _ remain bounded but

their time derivatives do not. During the strain/ng process the momentum

equations (5) degenerate, as T-+ O, to

fit + I3_ = 0

so that the velocity jump in the transformed variables is Irrotat+onal,
that is

ffi(2) ; (i(1) _ at = u (1) - ,_

at._d simiiarly

l I

+++'. . .,_ + - . + _t +
.... ii ', ,_ .......... _ I+ +- --
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! w = - _

' Th_ continuity condition then determines the potential as the _olutton
! of

i

_ which completes the solution for the velocity fLeld at state 2 "-'

_: The above transformations seem to be the natural ones for the study of

i the effect of uniform imposed strain on a homogeneous turbulent field,

i regardless of the rate at which the strain is imposed. A more general set of
i' transformations can be used when the mean strain-rate matrix is not diagonal,

i and also when the mean vorticity is nonzero.

i

NUMERICAL APPROXIMATIONS

We wish to simulate a spatially homogeneous turbulence field in an

infinite space, and this suggests that we represent the field spatially as a
Fourier series. The resulting field is periodic in all three space

dimensions, with correspondingly periodic spatial correlations. Ilowever,

if these correlations decay to negligible magnitude within the period,

(e.g., if the integral scale is much smaller than half the period), the error
due to the finite period should be small. In practice this requirement is

difficult to satisfy with the resolution allowed by today's computers.

In this section we develop the equations in more detail and describê̂

the integration process as programmed. Let TII = uu, T12 = L_Q, T]3 = _-w,

etc., tilde (~) denote the three-dimensional Fourier transform, and

kl, k2, k S be wave numbers in the _, _, and _ directions, respectlvely.
The equatlons (5) in wave space are then

_t + iklATll + ik2BTl2 + ik3CT13 + iklP = -_(Akl2 + Bk29 + Ck_ _)6

vt + iklATl2 + ik?B_22 + ik3C_23 + ik2p = -k'(Akl? + Bk2P + Ck32)_

wt + iklAT13 + ik2B_23 + ik_C_33 + ik3p = -_(Akl2 + Bk2 _ + Ck3?)w

iklAU + Ik2BO + Ik3Cw = 0

The linear terms are combined by multiplying the equations by the integrating
factor

!

._._ _ _..... ........ , - I =, ,,........... i----'-_I - "



A dr: _Jk B dt x_k,,7 C dt
*_ F(k,t) _ e e c (7)

giving

, d (Fu) 4 ['{tklArll 4. ik2B_12 + ik3C"t + [klP}= 0.i dt 1 *_

'_,, d (Fv) + F{ik A_ + ik2B:r22 + ik3Ci'23 + tk?D} = 0.. dt 1. 12 ,b.
(_)

d + ik2B_ 2 + ik3C_33 + ik3P} = 0d-_ (_) + S{ikIA_1 3 3

!. iklA(Fu ) + ik2B(F_ ) + ik3C(F_,) = 0

I Now multiply the first equation by ik I, the second by ik2, etc., to obtain(let O = ikl_, V = ik2v, Q = ik3_)

d (FU) = F{kI2A_II 2 id-_ + klk2BTl + klk3C_ 3} + k]2Fp

d + k 2B_22 + k2k3C_ + k22FP
d-_ (FV) = F{klk2A_12 2 23} (9)

d

d-_ (FW) = F{klk3A_13 + k2k3BT23 + k._2C_33} + k32F_

A(F0) + B(FV) + C(FW) = 0

(The purpose of this transformation of dependent variables is discussed

_ later on; note that k],k2,k 3 = 0 are special cases.)

The usual procedure for tile computation of p requires the time
differentiation of the continuity condition. However, we want the algorithm

to handle impulsive -strains correctly (jumps in A, B, and C), that is,

according to Taylor's sudden distortion theory, so we need to avoid the
differentiation. We thus define a potential _ as

't= -F -] ,) FI_ dr

and absorb it into the time-advanced variables. Tl,en



dX l.,{.kl2A: r 4- klk,,Bt + k k.J::t } "

d_Y = F{klk_Ai + k?PB.i._,, 4 k,2k3C:i23} (1{))dt I? .,

_d_ t{klk3A_ + k2k3B_ _ + k32C_33},,, dt = . 13 3

I and the continuity condition becomes
i a..

l .
ii ¢ = F-]IA A_ + B_ + C_ ) (11.)_ k12 + Bko?_ + Ck32

li where

_- +

F-Iy = 9 + k22$ (12)

F-I_ = W + k325

The T's are functions of 6, v, w only, so that, if u, v, w are known

at the beginning of a time step and satisfy the continuity condition, we may
advance X, ?, 7.. However, to form time derivatives of the advanced X, Y, Z

we must form from (12) advanced values of u, v, w, and this requires the solu-
tion (ii) for _ at the advanced time. This is done using the continuity

condition at the advanced time, and does not require its time differentiation.

At the beginning of a time step t = O, and we have

F--1, +=o,x=_,_= , z=w

The equations for X, Y, and Z are integrated over the time step, and the
final values are used in equati_:ns (ii) and (12) to produce final values of

U, V, and W. The origin of time is then shifted to the final time giving the

proper initialization for the next time step.

Spatial differentiation is a point operator In wave space but multiplica-

tion (e.g., TI2 _ _V) is not, and the most efficient means of forming the
Fourier transform of a product from the transforms of its terms is to return

to physical space by inverting the transforms, form the product, _nd then

transform the result back to wave space. Unfortunately, the transformation

of the product back to wave space introduces an error due to spectral

truncat ion. I



The trunc;_t:tm_ ,,rrt_r:+ are :_;:,st ,,,'rally de, ln_m,,-;tr:ltt,d |n ,_np :;putl,:|l
dt[mensl.on. Tilt, repcp,qentatttm ,>f the pr_duct ot twc_ Fourier + ,+erle,q a, ii
(._n comple× ,_orm) a,+ a Fmtrter :;t_l'lt,t;; e 1:; g lv++lt hy the (Infinite)
(:OIIVO 1 lit I on :4tllll

4_,-t

ck = ak-sfis

ltowever, the proccsn of inverting ./'inige transforms a and 1;, forming tl,e
product ab, and then taking its .]"h_'Zl:e transform results instead tn two
sums :

= ak-sbs+ ak M-st's
8 S

The first sum represents a contribution (incomplete due to truncation) to ab
correctly attributed to wave number k. The second sum also represents a
contribution to ab, but it is actually a contribution not to k, but to
k±H, wave numbers beyond those allowed by the length (M) of the finite
transforms used. This is the "altasing" error. Row it may be argued that
because aliasing errors do not account for all of the truncation error,
suppression of the aliasing error is not cost effective so far as accuracy is
concerned. Powever, in the algorithm used here, the aliased terms can lead
to nonlinear instability, and their control is essential.

Now consider the effect of a shift of the physical coordinate system.
In wave space this amounts to multiplication by eikA, where -A is the

amount of coordinate shift. If we use eikA to shift ak, bl,. prior to
inverting them to physical space, form the product ab on the shifted grld,
transform back to wave space, attd finally shift coordinates back with e-ikA
we obtain

,i Ck =Z ak-s _. + e-+iMA _ak±M_s_ s
s s

The first (alias-free) sum is invariant under these shifts, but the ,+3econd

sum, the aliased one which we wish to suppress, has a phase dependency on k

and can be eliminated. For example, if two evaluations are made, one with
_+iMk _+iMk

e = 1 and the other with e = -i, the alias-free result is one-half

their sum. The second sum (which is multiplied by the phase factor) itself
vanishes identically for Ik[ <_N, (N < M/3) if modes of a and b outside of

this range are nulled prior to inversion, and transforms of length M ate

retained. Thus two independent procedures are available for alias suppression.

The extension of these procedures to three dimensions gives for each ck
eight terms, seven of which represent allasing errors. ]'he a11ased tcrm._

nre t!asslfIed according to the number of dimensions in which aliasin_$ has
+tkhAn

occurred. We the.nhave [k --"(kI, k,, ki_), nn = c ]

8 I
1



. (:ll I a_i-fr(_t_)
(_k So

+ 01Si + 0;,S;, -# 03S._ (sfnl_]y-_]ta_;(,d)

+ 0 I ; } . iS6O)S .+ Op(} S,, + ()._0 ((hJub]y-a]ict_Pd)

£ O] Op03S 7 (trtp]y-:ll I;l_(,(t)

All of the aliased sums (S l, . . S.i) vanish if modes having (inU k t > Ni

are nulled. The doubly and triply aliased sums (S_,, . . ., S7) vanish if _,
modes having any /n_o k i . Ni are nulled. The triply aliased stmi (S 7)
vanishes if modes having aZ_ Dhvee k t > N1 are nulled. Alternatively one

,: can evaluate the convolution eight times using the eight combinations of

_: 0X, O , 0 z = ±i and sum to eliminate the allased terms. Note that suppres-
_ sion _y the latter means requires eight evaluations to eliminate all of the

_ aliased terms. One can also, as suggested by Orszag (ref. i), remove
Sq, . . . S7 by truncation and the remaining single aliases by coordinate

shift with two evaluations. We are faced with the choice between losinq
i information (truncation) or losing computational speed (multiple evaluations).

I

We have, following Orszag, eliminated doubly and triply aliased sums

by truncation, though the truncation used here differs slightly from that of

Orszag who nulls modes having k • k > 2(M/3) 2. We have not exactly
eliminated the remaining single aliases, due to the computational cost of

the double evaluations required. Instead we have used the fact that the

Runge-Kutta algorithm requires pairs of evaluations at each half step and

that by using a shifted grid for the second evaluation we reduce the total

alias error for the pair by a factor of At2. The possibility of nonlinear
instability is further reduced by insuring that the 0. for the first

evaluation in a pair are not correlated with those of gther pairs. This is

easily accomplished by the use of a uniform-random-number generator during
computation of the phase factors.

DATA MANAGEMENT !

In large simulations the high-speed random-access memory of the computer
cannot hold the entire data base of the problem (in the present code it holds

6% of it). In this case the high-speed memory may only be able to hold a few

lines of the mesh (e.g., all values of k I for a few k2, k 3 values), and
it is convenient to transform and take derivatlveso only along those l;ines.

In general, separate passes over the data base are required for each spatla]

dimension. The directional order in which operations are performed then

determines the required number of passes over the data bas_. We will
demonstrate how this number nmy be reduced in a spectral algorithm.

Consider the evaluation in wave space of !60)_ and (6_)_, which is

required in equation (5). The transforms of u and v are lhverted in thL,
x, y, and _ dlrections_ each direction requiring a separate pass over the

9

I ' i .---- Jl ._i



data ba._;e. {In the 1.,._t {z) i,a._;:; ,_f t hi_; ._i,,,lU,m,'," we al_o I,H-m, Ill phy:;lc;ll
._q_.'tee, tile tlv prt_dm'! /llld tht'll I.l,lllHl't*rlll I_;lck [o w;Ivt' !;p;l_'t' Ill II1_.
_. directlml. In pt'lnclple tht,r, r_.m;_tn oJ_ly tht. x and y tr,'nlsforme-; ;tlld

tile mul.t [pl. le;ttlons by I k x anti il,.y to form tim derivatives In the _ and
y directions. Tim pl'oblolll Is that, under our eonstraint,_;, l:r;inslc_rms tllld

derivatives can only be takt_n In the direction _,1 the, grld llll[.s hel.d In
fast memory. Undc.r t:hese constraints we mu.._t eltller perf¢_rm three tr_mqform:_
and two derivatives in two passes, or two trr|n:]fOrlll:.; alld two d(,rlvat tve._ In
three passes. if the constraint ()n tile dt, rlv;tt;ive is abse.t tim result:; c:.:

be obtained in two transforms and two derivatives in two pass_,,_. Thl:_;
constraint can be removed only If four llnL.s of thc mesh can be held simu]-

taneously in fast memory (so that all eight real numbers representing wave -*,.
number k are present). The ILLIAC fast memory Is sufficlentl.y large to

accommodate four mesh lines, hut not within a single processing element (PE),
so that differentiation would require conm_unicatlon across the PE's. We

have instead used a slightly altered set of dependent varlab]es that avoids
this problem altogether.

If the x momentum equation is differentiated with respect to x, and

the y momentum equation with respect to 9, the uv stress term appears as

(uv)_9 in both equations, and its evaluation under the constraints requires
two transforms and two derivatives in two passes. But two extra integrations

(of G_ and v#,) are then required to form 6 and _ in physical space; iA j

however, since integration and differentiation cost far less than either a

transform or an I/O pass, this method is quite efficient. To avoid loss,

upon differentiation, of information in a Fourier mode having a null wave

number we simply do not multiply that mode by its wave number (i.e., zero)
and similarly when we integrate it we do not d:_.:eideby its wave number. What

this amounts to is that, instead of the usual .',pectraldependent variables

u(k 1 ,k2,k_ ,)

v(k I , k2, k.,:' )

w(k 1 ,k2,k 3 )

we use

u(O,k2,k a) , iklU(kl,k2,k 3) , kI # 0

_}(k 1,O,k 3) , ik2v(k 1,k2,k 3) , k 2 # 0

W(kl,k2,0) , ik3W(kl,k2,k,_) , k 3 ¢ 0

Use of these variables simplifies the continuity condition and mtn_mfzes the
number of transforms and passes over the data base.

I0



1NITIAI, CONDITIONS

The initial re]eel.ties are cho,_en randomly, subject to tile constraint:+

of continuity and a specified energy spectrum. In detail, the real and
imaginary parts of ttle Fourier velocity ampllt:udc_,_ i_i(k) are mel.ected ran-
domly from a uniform distribution over the circle that is the intersection
of the sphere (having surface area proportional, to F(k)) determined by
the desired energy spectrum and the plane (uormal to k) determined by

continuity. For example, consider the (real) spectral mode (kl,k2,k 3 # O)

Ux = fl cos klX sln k2Y cos k3z "_'

= f2 cos klX sin k2y cos k_zVy

Wz = f3 cos klx sin k2y cos k3z

_ The algorithm described previously advances the vector f in time given the

initial values (kl,k2,k3 = 0 are special cases)

fl C(kl2 + k22)-I/2kl(k klk3 )
= 2 cos _ + _ sin

/k2k3 )f2 = C(kl2 + k22)-I/2k2_---k-- sin _ - kI cos

i/2 k3
f3 = -C(kl2 + kP2) -_- sin

where k2 = k.2 + k22 + k_ 2, c2 _ [E(k)/2_k2], and _ is a random number
uniformly distributed on the interval (0, 2n).

SCALING PROCEDURE

The simulation variables are nondimensional (integer wave numbers with

period 2_) and must be scaled to obtain dimensional values. If we wish to

simulate an experimental flow, knowing at the initial time only its energy

spectrum Ee(ke) and viscosity Ve, we must use a similar energy spectrum
(i.e., differing only in energy and wave number scales) and specify a
simulation viscosity such that the dimensionless problems are the same. Thus

we define scale factors a, 8 relating the simulation energy E and wave
number k to the experimental values by

E(k)dk = aEe(ke)dk e , k e = Bk
I

Here E and k are dimensionless, a has units L-2T 2, and 8 has units 1

L"I so that time must scale as

ii
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and tllc'4:|,qC:r_Hity _I_

i

ii, The _C.;lle factc)r cL dept:nds cfftly o1_ t:lle sc.;ll.[nl, , <Jr tllt_ dppc.lld, llt var|ablt_;:

7 of _NC_ prob_[em Ltnd, 8illt_l, the ¢:t_inpl;t at J on ;|].l.{_ws ;11| unJ|mited r;lll_;c, for tlleIr
'_.... vil]uos, ClaLlnb',t,s of _t ploduce only cllany_t_; ¢_t: so;lit, In Lhc. re:_ults, q'hJs

_ would a]so be tile c:ase for f_ i l the conlput;itJ.Oll al lowed ;m unl_lnltc, d range

off vaJ.ues for the independe[_t wtriables (wave pumber:,)_ l,ut such would recmirt. ,,.,,
inflnice spr.ttal reso].ution.

i
d"

_.." _t'|le computer simulation does no_, of ,:our_Je, h_ve infin*te _eso _l]tiol,,

i;,', and the range of _ts independent variables ix simply the value of Its highest

};'i'{ nondimensional (integer) wave number. Because the entire e.-:perlmental rangeof length scales cannot be simulated, the choice of B determines _)hiuh

physical wave numbers of the experiment are to be simulated. Clearly the

error of the simulation depends on this choic.e, lint at present no rationale

is known for making it. The choice of Ferzlger (tel. 3), for example, is

tile scaling that allows the greatest total energy to be included in the

simulation. There is also, howewer, the implicit constraint that tile spatial

period be "much greater" than the integral scale of the turbulent field

The number of modes, or degree of freedom of the motion, within a _<_n,3e

of scales (e.g., K < k < 2K) characterized by K is proportional to K 3.

The different scale ranges of the motion are certainly not represented equally

well in the statistical sense. There are very few modes in the lacger scales

(smaller wave numbers), and if the simulation is to represent turbulence we

must require that a small number of modes does not contain a large fraction

of the energy. This is equivalent to the integral length constraint.

If the truncation error is to be small, the viscosity must be high

enough to damp the highest wa_;e numbers of the calculation to the point where

they, and presumably also those lost by truncation, have negligible effect.

In other words, an accurate ar,d compl._.te solution requires that the computa-

tion resolve all scales of motion; otherwise one must face the notorlous

"closure problem." Since the simulation code presented here contains no

closure approximations, It I__ necessarily restricted to very low-turbulence

Reynolds numbers.

SAMPLE RESULTS

Several runs of the simulation code have been made for isotroplc flow

to develop the algo_'ithm and to obtain numerical error estim_att,s. Typical

energy spectra are shown In figures 3-6. The algorithm used has negligible

numer_ca] d{ ssipat ton and, when the spatial re,,_olutl¢,n I:_ tt:unt'ated at any

12
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i'
; finite wave nunll_t,r In ;m lnvt.se:ld (u = O) fl.utd, Iht, tmo.rgy e;_se;-_de eventu;tlly

_ loads [(1 ilia oqulp;trl:ll loned '-ltat_' (flf;. "]) wlth the th_,_r¢,t_eal spectrum

f l,;(k) :, ck 2. 'l'hl:; tendency :Is at:Ill ;lppaJeut whell mt_lecu],qr dissipation Is

*ncluded (f.tl;. 4) 1t: t:he :',rage el ct_mputed seal.es dcms not include almost

all. of the dts';Jl._Vton. N_ro of the d£usIlmtton r;mge can be Included

by increasing the range of computed scales (171g. 5) or by shifting the range

of computed scal_,:_ (flg. 6) to tnc]ude more of the dissipation range.

!i̧

p:,

13



APPENI_I)_

'['lie ]I,LTAC PROGRAM

tl
' Program Structure

:: A fourth-order Runge-Kutta algorith,, i_ usc_d to integrate the systemf

of equations (10)-(12). The strain inverses A, B, C, and the integrating

factor F are considered known. The bulk of the computation is the evalua-

tion of tlleright side of (i0), whic_ is done in subroutines PHASE1, PIIASE2, --..

and PHASE3. The dependent variables X,Y,Z, are then advanced in STEP, and

the continuity condition (ii), is used by PRESSR to recover the physical

velocities (12). These five subprograms are called sequentially by the
control routine LOOP which is responsible for data management and step
control.

The functions of processes called by these routines are given by
in-line comments in the listing.

Data Structure and Flow

The data base resides on disk and consists of two blocks. The first

block of data holds the velocity field at the beginning of a Runge-Kutta

step (three words/node) and a predicted velocity accumulator field

(three words/node), This block of data is always accessed sequentially.
The second block of data is working space (four words/node) in which the

right side of (i0) is evaluated, requiring both sequential and nonsequential
page accesses from the disk.

Each prediction within the Runge-Kutta process requires two complete
passes through the data base, one bringing (x,y) planes into core (PHASE!,

PHASE3, STEP, and PRESSR) for operators in the y direction, and one bring-
ing in (x,z) planes (PHASE2) for operators in the x and z directions. In

the latter pass, only tileworking space data block is required, a]low]ng
the (x,z) planes to be handled by a triple buffered scheme.

Listing of Program

The program is coded for execution in 32-bit precision on the ILLIAC

computer. The routines listed in this appendix, which are coded in the CFD

language, cover the major algorithmic steps of the computation. Some of
the lower level routines are coded in assembly language (ASK) for efficiency,

and others had to be hand coded because of the restrictions placed on 32-bit
operation by the CFD language.

14
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NUMBER OF MESH CELLS 262144 (=643 )

DEPENDENT VARIABLES 786432 (=3 • 643)

DATA BASE 2.62 x 106 (=10' 643 )

FFT'S PER STEP 376832 (=4 • 23 642)

COMPUTER TIME PER STEP 20 sec (REAL TIME)

COMPUTER TIME PER RUN 10 TO 30rain (REALTIME)

ALGORITHM

SPATIAL RESOLUTION SPECTRAL (ALIAS-DAMPED)

TEMPORAL RESOLUTION RUNGE-KUTTA (FOURTH-ORDER)

Figure 2.- Simulation program.
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Figure 3.- Evolution toward equipartitioned energy in invlscid energy-
conservative simulation.
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